Variants of the majority problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On randomized algorithms for the majority problem

In the majority problem, we are given n balls coloured black or white and we are allowed to query whether two balls have the same colour or not. The goal is to find a ball of majority colour in the minimum number of queries. The answer is known to be n − B(n) where B(n) is the number of 1’s in the binary representation of n. In this paper we study randomized algorithms for determining majority,...

متن کامل

Global Graph Properties byMeans of Local Computations : the Majority Problem

This paper is a contribution to the study of the general problem of characterizing those properties which can be computed on a graph or a network by means of local transformations. By using an abstract model based on graph relabelling systems we consider the majority problem : let G be a graph whose vertices have label A or B ; we say that label A has the majority if the number of A-labelled ve...

متن کامل

Evolving Small-World Automata for the Majority Problem

We study an extension of cellular automata to arbitrary interconnection topologies for the majority problem. By using an evolutionary algorithm, we show that small-world network topologies consistently evolve from regular and random structures without being designed beforehand. These topologies have better performance than regular lattice structures and are easier to evolve. Moreover they show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2004

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(03)00186-0